metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C60⋊5C4⋊3C2, Dic3⋊C4⋊4D5, (C2×C20).11D6, (C2×C12).11D10, (C2×C60).5C22, Dic15⋊5C4⋊6C2, (C22×D5).7D6, C15⋊6(C42⋊2C2), D10⋊C4.2S3, C30.28(C4○D4), C6.48(C4○D20), C10.6(C4○D12), (C2×C30).52C23, C6.8(Q8⋊2D5), (C2×Dic5).96D6, C5⋊2(C23.8D6), (Dic3×Dic5)⋊10C2, C2.8(D20⋊5S3), C6.65(D4⋊2D5), (C2×Dic3).13D10, D10⋊Dic3.6C2, C10.65(D4⋊2S3), C2.11(C12.28D10), (C6×Dic5).30C22, C2.11(C30.C23), (C2×Dic15).54C22, (C10×Dic3).32C22, C3⋊5(C4⋊C4⋊D5), (C2×C4).35(S3×D5), (D5×C2×C6).5C22, (C5×Dic3⋊C4)⋊4C2, C22.139(C2×S3×D5), (C2×C6).64(C22×D5), (C3×D10⋊C4).2C2, (C2×C10).64(C22×S3), SmallGroup(480,438)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×C60).C22
G = < a,b,c,d | a2=b60=c2=1, d2=b30, ab=ba, dcd-1=ac=ca, ad=da, cbc=ab19, dbd-1=ab41 >
Subgroups: 556 in 120 conjugacy classes, 44 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, C23, D5, C10, Dic3, C12, C2×C6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, Dic5, C20, D10, C2×C10, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×C6, C3×D5, C30, C42⋊2C2, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C5×Dic3, C3×Dic5, Dic15, C60, C6×D5, C2×C30, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C5×C4⋊C4, C23.8D6, C6×Dic5, C10×Dic3, C2×Dic15, C2×C60, D5×C2×C6, C4⋊C4⋊D5, Dic3×Dic5, D10⋊Dic3, Dic15⋊5C4, C3×D10⋊C4, C5×Dic3⋊C4, C60⋊5C4, (C2×C60).C22
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, C42⋊2C2, C22×D5, C4○D12, D4⋊2S3, S3×D5, C4○D20, D4⋊2D5, Q8⋊2D5, C23.8D6, C2×S3×D5, C4⋊C4⋊D5, D20⋊5S3, C12.28D10, C30.C23, (C2×C60).C22
(1 139)(2 140)(3 141)(4 142)(5 143)(6 144)(7 145)(8 146)(9 147)(10 148)(11 149)(12 150)(13 151)(14 152)(15 153)(16 154)(17 155)(18 156)(19 157)(20 158)(21 159)(22 160)(23 161)(24 162)(25 163)(26 164)(27 165)(28 166)(29 167)(30 168)(31 169)(32 170)(33 171)(34 172)(35 173)(36 174)(37 175)(38 176)(39 177)(40 178)(41 179)(42 180)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 127)(50 128)(51 129)(52 130)(53 131)(54 132)(55 133)(56 134)(57 135)(58 136)(59 137)(60 138)(61 195)(62 196)(63 197)(64 198)(65 199)(66 200)(67 201)(68 202)(69 203)(70 204)(71 205)(72 206)(73 207)(74 208)(75 209)(76 210)(77 211)(78 212)(79 213)(80 214)(81 215)(82 216)(83 217)(84 218)(85 219)(86 220)(87 221)(88 222)(89 223)(90 224)(91 225)(92 226)(93 227)(94 228)(95 229)(96 230)(97 231)(98 232)(99 233)(100 234)(101 235)(102 236)(103 237)(104 238)(105 239)(106 240)(107 181)(108 182)(109 183)(110 184)(111 185)(112 186)(113 187)(114 188)(115 189)(116 190)(117 191)(118 192)(119 193)(120 194)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(2 158)(3 39)(4 136)(5 17)(6 174)(7 55)(8 152)(9 33)(10 130)(12 168)(13 49)(14 146)(15 27)(16 124)(18 162)(19 43)(20 140)(22 178)(23 59)(24 156)(25 37)(26 134)(28 172)(29 53)(30 150)(32 128)(34 166)(35 47)(36 144)(38 122)(40 160)(42 138)(44 176)(45 57)(46 154)(48 132)(50 170)(52 148)(54 126)(56 164)(58 142)(60 180)(61 79)(62 232)(63 117)(64 210)(65 95)(66 188)(67 73)(68 226)(69 111)(70 204)(71 89)(72 182)(74 220)(75 105)(76 198)(77 83)(78 236)(80 214)(81 99)(82 192)(84 230)(85 115)(86 208)(87 93)(88 186)(90 224)(91 109)(92 202)(94 240)(96 218)(97 103)(98 196)(100 234)(101 119)(102 212)(104 190)(106 228)(107 113)(108 206)(110 184)(112 222)(114 200)(116 238)(118 216)(120 194)(121 157)(123 135)(125 173)(127 151)(131 167)(133 145)(137 161)(141 177)(143 155)(147 171)(153 165)(163 175)(181 187)(183 225)(185 203)(189 219)(191 197)(193 235)(195 213)(199 229)(201 207)(205 223)(209 239)(211 217)(215 233)(221 227)(231 237)
(1 184 31 214)(2 91 32 61)(3 206 33 236)(4 113 34 83)(5 228 35 198)(6 75 36 105)(7 190 37 220)(8 97 38 67)(9 212 39 182)(10 119 40 89)(11 234 41 204)(12 81 42 111)(13 196 43 226)(14 103 44 73)(15 218 45 188)(16 65 46 95)(17 240 47 210)(18 87 48 117)(19 202 49 232)(20 109 50 79)(21 224 51 194)(22 71 52 101)(23 186 53 216)(24 93 54 63)(25 208 55 238)(26 115 56 85)(27 230 57 200)(28 77 58 107)(29 192 59 222)(30 99 60 69)(62 121 92 151)(64 143 94 173)(66 165 96 135)(68 127 98 157)(70 149 100 179)(72 171 102 141)(74 133 104 163)(76 155 106 125)(78 177 108 147)(80 139 110 169)(82 161 112 131)(84 123 114 153)(86 145 116 175)(88 167 118 137)(90 129 120 159)(122 207 152 237)(124 229 154 199)(126 191 156 221)(128 213 158 183)(130 235 160 205)(132 197 162 227)(134 219 164 189)(136 181 166 211)(138 203 168 233)(140 225 170 195)(142 187 172 217)(144 209 174 239)(146 231 176 201)(148 193 178 223)(150 215 180 185)
G:=sub<Sym(240)| (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,153)(16,154)(17,155)(18,156)(19,157)(20,158)(21,159)(22,160)(23,161)(24,162)(25,163)(26,164)(27,165)(28,166)(29,167)(30,168)(31,169)(32,170)(33,171)(34,172)(35,173)(36,174)(37,175)(38,176)(39,177)(40,178)(41,179)(42,180)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,209)(76,210)(77,211)(78,212)(79,213)(80,214)(81,215)(82,216)(83,217)(84,218)(85,219)(86,220)(87,221)(88,222)(89,223)(90,224)(91,225)(92,226)(93,227)(94,228)(95,229)(96,230)(97,231)(98,232)(99,233)(100,234)(101,235)(102,236)(103,237)(104,238)(105,239)(106,240)(107,181)(108,182)(109,183)(110,184)(111,185)(112,186)(113,187)(114,188)(115,189)(116,190)(117,191)(118,192)(119,193)(120,194), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (2,158)(3,39)(4,136)(5,17)(6,174)(7,55)(8,152)(9,33)(10,130)(12,168)(13,49)(14,146)(15,27)(16,124)(18,162)(19,43)(20,140)(22,178)(23,59)(24,156)(25,37)(26,134)(28,172)(29,53)(30,150)(32,128)(34,166)(35,47)(36,144)(38,122)(40,160)(42,138)(44,176)(45,57)(46,154)(48,132)(50,170)(52,148)(54,126)(56,164)(58,142)(60,180)(61,79)(62,232)(63,117)(64,210)(65,95)(66,188)(67,73)(68,226)(69,111)(70,204)(71,89)(72,182)(74,220)(75,105)(76,198)(77,83)(78,236)(80,214)(81,99)(82,192)(84,230)(85,115)(86,208)(87,93)(88,186)(90,224)(91,109)(92,202)(94,240)(96,218)(97,103)(98,196)(100,234)(101,119)(102,212)(104,190)(106,228)(107,113)(108,206)(110,184)(112,222)(114,200)(116,238)(118,216)(120,194)(121,157)(123,135)(125,173)(127,151)(131,167)(133,145)(137,161)(141,177)(143,155)(147,171)(153,165)(163,175)(181,187)(183,225)(185,203)(189,219)(191,197)(193,235)(195,213)(199,229)(201,207)(205,223)(209,239)(211,217)(215,233)(221,227)(231,237), (1,184,31,214)(2,91,32,61)(3,206,33,236)(4,113,34,83)(5,228,35,198)(6,75,36,105)(7,190,37,220)(8,97,38,67)(9,212,39,182)(10,119,40,89)(11,234,41,204)(12,81,42,111)(13,196,43,226)(14,103,44,73)(15,218,45,188)(16,65,46,95)(17,240,47,210)(18,87,48,117)(19,202,49,232)(20,109,50,79)(21,224,51,194)(22,71,52,101)(23,186,53,216)(24,93,54,63)(25,208,55,238)(26,115,56,85)(27,230,57,200)(28,77,58,107)(29,192,59,222)(30,99,60,69)(62,121,92,151)(64,143,94,173)(66,165,96,135)(68,127,98,157)(70,149,100,179)(72,171,102,141)(74,133,104,163)(76,155,106,125)(78,177,108,147)(80,139,110,169)(82,161,112,131)(84,123,114,153)(86,145,116,175)(88,167,118,137)(90,129,120,159)(122,207,152,237)(124,229,154,199)(126,191,156,221)(128,213,158,183)(130,235,160,205)(132,197,162,227)(134,219,164,189)(136,181,166,211)(138,203,168,233)(140,225,170,195)(142,187,172,217)(144,209,174,239)(146,231,176,201)(148,193,178,223)(150,215,180,185)>;
G:=Group( (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,153)(16,154)(17,155)(18,156)(19,157)(20,158)(21,159)(22,160)(23,161)(24,162)(25,163)(26,164)(27,165)(28,166)(29,167)(30,168)(31,169)(32,170)(33,171)(34,172)(35,173)(36,174)(37,175)(38,176)(39,177)(40,178)(41,179)(42,180)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,209)(76,210)(77,211)(78,212)(79,213)(80,214)(81,215)(82,216)(83,217)(84,218)(85,219)(86,220)(87,221)(88,222)(89,223)(90,224)(91,225)(92,226)(93,227)(94,228)(95,229)(96,230)(97,231)(98,232)(99,233)(100,234)(101,235)(102,236)(103,237)(104,238)(105,239)(106,240)(107,181)(108,182)(109,183)(110,184)(111,185)(112,186)(113,187)(114,188)(115,189)(116,190)(117,191)(118,192)(119,193)(120,194), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (2,158)(3,39)(4,136)(5,17)(6,174)(7,55)(8,152)(9,33)(10,130)(12,168)(13,49)(14,146)(15,27)(16,124)(18,162)(19,43)(20,140)(22,178)(23,59)(24,156)(25,37)(26,134)(28,172)(29,53)(30,150)(32,128)(34,166)(35,47)(36,144)(38,122)(40,160)(42,138)(44,176)(45,57)(46,154)(48,132)(50,170)(52,148)(54,126)(56,164)(58,142)(60,180)(61,79)(62,232)(63,117)(64,210)(65,95)(66,188)(67,73)(68,226)(69,111)(70,204)(71,89)(72,182)(74,220)(75,105)(76,198)(77,83)(78,236)(80,214)(81,99)(82,192)(84,230)(85,115)(86,208)(87,93)(88,186)(90,224)(91,109)(92,202)(94,240)(96,218)(97,103)(98,196)(100,234)(101,119)(102,212)(104,190)(106,228)(107,113)(108,206)(110,184)(112,222)(114,200)(116,238)(118,216)(120,194)(121,157)(123,135)(125,173)(127,151)(131,167)(133,145)(137,161)(141,177)(143,155)(147,171)(153,165)(163,175)(181,187)(183,225)(185,203)(189,219)(191,197)(193,235)(195,213)(199,229)(201,207)(205,223)(209,239)(211,217)(215,233)(221,227)(231,237), (1,184,31,214)(2,91,32,61)(3,206,33,236)(4,113,34,83)(5,228,35,198)(6,75,36,105)(7,190,37,220)(8,97,38,67)(9,212,39,182)(10,119,40,89)(11,234,41,204)(12,81,42,111)(13,196,43,226)(14,103,44,73)(15,218,45,188)(16,65,46,95)(17,240,47,210)(18,87,48,117)(19,202,49,232)(20,109,50,79)(21,224,51,194)(22,71,52,101)(23,186,53,216)(24,93,54,63)(25,208,55,238)(26,115,56,85)(27,230,57,200)(28,77,58,107)(29,192,59,222)(30,99,60,69)(62,121,92,151)(64,143,94,173)(66,165,96,135)(68,127,98,157)(70,149,100,179)(72,171,102,141)(74,133,104,163)(76,155,106,125)(78,177,108,147)(80,139,110,169)(82,161,112,131)(84,123,114,153)(86,145,116,175)(88,167,118,137)(90,129,120,159)(122,207,152,237)(124,229,154,199)(126,191,156,221)(128,213,158,183)(130,235,160,205)(132,197,162,227)(134,219,164,189)(136,181,166,211)(138,203,168,233)(140,225,170,195)(142,187,172,217)(144,209,174,239)(146,231,176,201)(148,193,178,223)(150,215,180,185) );
G=PermutationGroup([[(1,139),(2,140),(3,141),(4,142),(5,143),(6,144),(7,145),(8,146),(9,147),(10,148),(11,149),(12,150),(13,151),(14,152),(15,153),(16,154),(17,155),(18,156),(19,157),(20,158),(21,159),(22,160),(23,161),(24,162),(25,163),(26,164),(27,165),(28,166),(29,167),(30,168),(31,169),(32,170),(33,171),(34,172),(35,173),(36,174),(37,175),(38,176),(39,177),(40,178),(41,179),(42,180),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,127),(50,128),(51,129),(52,130),(53,131),(54,132),(55,133),(56,134),(57,135),(58,136),(59,137),(60,138),(61,195),(62,196),(63,197),(64,198),(65,199),(66,200),(67,201),(68,202),(69,203),(70,204),(71,205),(72,206),(73,207),(74,208),(75,209),(76,210),(77,211),(78,212),(79,213),(80,214),(81,215),(82,216),(83,217),(84,218),(85,219),(86,220),(87,221),(88,222),(89,223),(90,224),(91,225),(92,226),(93,227),(94,228),(95,229),(96,230),(97,231),(98,232),(99,233),(100,234),(101,235),(102,236),(103,237),(104,238),(105,239),(106,240),(107,181),(108,182),(109,183),(110,184),(111,185),(112,186),(113,187),(114,188),(115,189),(116,190),(117,191),(118,192),(119,193),(120,194)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(2,158),(3,39),(4,136),(5,17),(6,174),(7,55),(8,152),(9,33),(10,130),(12,168),(13,49),(14,146),(15,27),(16,124),(18,162),(19,43),(20,140),(22,178),(23,59),(24,156),(25,37),(26,134),(28,172),(29,53),(30,150),(32,128),(34,166),(35,47),(36,144),(38,122),(40,160),(42,138),(44,176),(45,57),(46,154),(48,132),(50,170),(52,148),(54,126),(56,164),(58,142),(60,180),(61,79),(62,232),(63,117),(64,210),(65,95),(66,188),(67,73),(68,226),(69,111),(70,204),(71,89),(72,182),(74,220),(75,105),(76,198),(77,83),(78,236),(80,214),(81,99),(82,192),(84,230),(85,115),(86,208),(87,93),(88,186),(90,224),(91,109),(92,202),(94,240),(96,218),(97,103),(98,196),(100,234),(101,119),(102,212),(104,190),(106,228),(107,113),(108,206),(110,184),(112,222),(114,200),(116,238),(118,216),(120,194),(121,157),(123,135),(125,173),(127,151),(131,167),(133,145),(137,161),(141,177),(143,155),(147,171),(153,165),(163,175),(181,187),(183,225),(185,203),(189,219),(191,197),(193,235),(195,213),(199,229),(201,207),(205,223),(209,239),(211,217),(215,233),(221,227),(231,237)], [(1,184,31,214),(2,91,32,61),(3,206,33,236),(4,113,34,83),(5,228,35,198),(6,75,36,105),(7,190,37,220),(8,97,38,67),(9,212,39,182),(10,119,40,89),(11,234,41,204),(12,81,42,111),(13,196,43,226),(14,103,44,73),(15,218,45,188),(16,65,46,95),(17,240,47,210),(18,87,48,117),(19,202,49,232),(20,109,50,79),(21,224,51,194),(22,71,52,101),(23,186,53,216),(24,93,54,63),(25,208,55,238),(26,115,56,85),(27,230,57,200),(28,77,58,107),(29,192,59,222),(30,99,60,69),(62,121,92,151),(64,143,94,173),(66,165,96,135),(68,127,98,157),(70,149,100,179),(72,171,102,141),(74,133,104,163),(76,155,106,125),(78,177,108,147),(80,139,110,169),(82,161,112,131),(84,123,114,153),(86,145,116,175),(88,167,118,137),(90,129,120,159),(122,207,152,237),(124,229,154,199),(126,191,156,221),(128,213,158,183),(130,235,160,205),(132,197,162,227),(134,219,164,189),(136,181,166,211),(138,203,168,233),(140,225,170,195),(142,187,172,217),(144,209,174,239),(146,231,176,201),(148,193,178,223),(150,215,180,185)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 15A | 15B | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 30A | ··· | 30F | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 20 | 2 | 4 | 6 | 6 | 10 | 10 | 12 | 30 | 30 | 60 | 2 | 2 | 2 | 2 | 2 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 20 | 20 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | ··· | 4 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | D6 | C4○D4 | D10 | D10 | C4○D12 | C4○D20 | D4⋊2S3 | S3×D5 | D4⋊2D5 | Q8⋊2D5 | C2×S3×D5 | D20⋊5S3 | C12.28D10 | C30.C23 |
kernel | (C2×C60).C22 | Dic3×Dic5 | D10⋊Dic3 | Dic15⋊5C4 | C3×D10⋊C4 | C5×Dic3⋊C4 | C60⋊5C4 | D10⋊C4 | Dic3⋊C4 | C2×Dic5 | C2×C20 | C22×D5 | C30 | C2×Dic3 | C2×C12 | C10 | C6 | C10 | C2×C4 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 6 | 4 | 2 | 4 | 8 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
Matrix representation of (C2×C60).C22 ►in GL6(𝔽61)
60 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
28 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 0 | 0 | 0 |
0 | 0 | 31 | 48 | 0 | 0 |
0 | 0 | 0 | 0 | 54 | 34 |
0 | 0 | 0 | 0 | 56 | 59 |
1 | 0 | 0 | 0 | 0 | 0 |
58 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 1 |
0 | 0 | 0 | 0 | 17 | 44 |
16 | 31 | 0 | 0 | 0 | 0 |
35 | 45 | 0 | 0 | 0 | 0 |
0 | 0 | 53 | 5 | 0 | 0 |
0 | 0 | 24 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 0 |
0 | 0 | 0 | 0 | 0 | 50 |
G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,28,0,0,0,0,0,50,0,0,0,0,0,0,14,31,0,0,0,0,0,48,0,0,0,0,0,0,54,56,0,0,0,0,34,59],[1,58,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,17,17,0,0,0,0,1,44],[16,35,0,0,0,0,31,45,0,0,0,0,0,0,53,24,0,0,0,0,5,8,0,0,0,0,0,0,50,0,0,0,0,0,0,50] >;
(C2×C60).C22 in GAP, Magma, Sage, TeX
(C_2\times C_{60}).C_2^2
% in TeX
G:=Group("(C2xC60).C2^2");
// GroupNames label
G:=SmallGroup(480,438);
// by ID
G=gap.SmallGroup(480,438);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,64,590,219,58,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^60=c^2=1,d^2=b^30,a*b=b*a,d*c*d^-1=a*c=c*a,a*d=d*a,c*b*c=a*b^19,d*b*d^-1=a*b^41>;
// generators/relations